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SYNOPSIS  

Dimensional analysis and classical methods are combined to develop 
a simplified mathematical description of two practical nonlinear 
dynamic mechanical systems experiencing excitation similar to that due 
to an earthquake. This method is used to obtain system descriptions 
in closed algebraic form with appropriate constants. The number of 
constants provides the designer with the minimum number of complex 
time-history analyses or tests required to completely characterize the 
systems. Once these constants are evaluated, parametric and 
optimization studies can be performed very quickly by hand. 
Predictions based on application of the method are made. Comparisons 
of these predictions to results obtained from time-history solutions 
show the method is a valuable design tool. Application of the method 
to other situations is briefly discussed. 

RESUME 

On presente dans cet article une methode mathematique simple 
pour etudier deux systemes mecaniques non lineaires soumis a une 
excitation dynamique semblable a celles produites par un tremblement 
de terre. Cette methode est utilisee pour decrire les systemes sous 
forme algebrique, avec des constantes convenables. Lorsque ces 
constantes ont ete determinees on peut faire rapidement a la main des 
etudes parametriques et des etudes d'optimisation.On a fait des pre-
dictions en utilisant cette methode et la comparaison de ces predictions 
aux resultats obtenus avec des methodes plus exactes montre cue la 
methode proposee dans cet article est un outil tres utile pour le 
dimensionnement. On discute brievement de l'application de cette 
methode a d'autres cas. 
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INTRODUCTION 

Many practical engineering problems arise during the design phases 
of a dynamic mechanical system or component with inherent 
nonlinearities. The designer is often forced to perform a series of 
complex and expensive time-history analyses or tests to show that the 
design requirements are met. Then if a major parameter is changed, as 
often happens, it is necessary to repeat this expensive, 
time-consuming procedure. Because of the above and the fact that 
nonlinear dynamic mechanical systems are commonly used for control 
system applications, simplified design methods applicable to this type 
of system are particularly appealing. 

It is intuitively likely that many mechanical systems are amenable 
to a simplified description because they possess some or all of the 
following characteristics: 

the geometric nonlinearity effects are bounded in terms of 
forces of displacements (or both). 

the time scale to describe the local nonlinear effects is 
small in comparison to an output parameter time scale so that 
a time average description of local effects is appropriate. 

the time scale to describe the output parameter is small in 
comparison with a system characteristic time constant so that 
higher order terms can be neglected. 

the required output consists of something less than the 
complete detailed time-history response of the system and can 
be described with one parameter. 

In order to develop the simplified method a dimensional analysis 
is performed for a system consisting of a lumped mass being inserted 
into a cylinder that is subjected to a lateral sinusoidial 
displacement history. This analysis leads to a simple algebraic 
description of the system in terms of the appropriate physical 
parameters and system constants. These constants are evaluated by 
employing results from two of a series of nine time-history analyses 
of the system. Then, the simplified algebraic description is used to 
predict the response of the system for the other seven analyses and 
comparisons are made to the time-history results. These comparisons 
show that the approach works well for the lumped mass system where the 
mass is acted on by forces arising from gravitational and impact 
frictional effects. 

Parts of this work were performed on U.S. DOE Contract EY-76-C-15-2395. 
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The second system considered consists of a rod inserted into three 
bushings while the bushings are laterally displaced. This system can 
be viewed as an extension of the lumped mass system because, in 
addition to gravitational and impact frictional forces, there exist 
forces due to an insertion assist spring and fluid drag. Each of the 
latter forces is initially described by more conventional means. In 
order to obtain the correct physical parameters and form, a relevant 
differential equation is solved. The solution is put into series form 
and the appropriate terms are chosen. These terms are then made 
dimensionless and inserted into an extension to the simplified 
algebraic description developed for the lumped mass system. Again, 
comparison with analytical results shows that predictions made with 
the extended simplified system description are accurate. 

Dimensional Analysis of the Lumped Mass Nonlinear System  

The lumped mass in a cylinder problem is shown in Figure I. The 
mass falls in the positive y coordinate direction due to the 
gravitational force. Lateral motion of the cylinder causes impacting 
which gives rise to a retarding force through friction. The required 
output is the time necessary for the mass to travel a given distance, 
the insertion distance, in the y direction. A dimensional matrix for 
this system is constructed as follows: 

[F] [L] [r] 
w 0 0 -1 
xo  0 1 0 
G 0 1 0 
11 0 0 0 
k 1 -1 0 
m 1 -1 2 
g 0 1 -2 
y 0 1 0 
t 0 0 1 

Since there are nine quantities and the rank of the matrix is 
three, there are six dimensionless parameters which will completely 
describe the system [111. One choice for the dimensionless 
parameters and their significance is as follows. 

Input: CZ 

 

w2 

X
o 
= ° • Output: T E t(k/m)1/2  

(k/m)1/2  

System Parameters: 11, - 171 GK 4  , 
Y 

A 
mg 

   

'Numbers in brackets designate References listed at the end of this 
paper. 
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With the above the following mathematical statement can be made 

(Q, X0,T,p, Y) = Constant. 

Based upon the similarity between the problem of Figure 1 and 
that of a freely falling body this relationship is rewritten as 

= A (p, X0, S2, CT2 [0] (1) 

where A (p, X
0
, R, 4) is a dimensionless acceleration. 

Derivation of the Form of the Dimensionless Acceleration for  
Gravitational and Frictional Forces  

To develop the form of the dimensionless acceleration, A (p, X0, 
R, 4), that is consistent with equation (1), the expression for a 
freely falling body is modified to introduce the retarding effect of 
impact forces due to contact with the cylinder times the coefficient 
of friction, p, between the mass and the cylinder. 

The free fall expression for a body starting at rest is 

y
1 

= 7  g t
2 
 [L] . (2) 

If a time average of the impact forces is defined as r and 
introduced into equation (2), then 

y = (g -) t2  [L] (3) 

where -P-E is the time average acceleration due to the frictional 
1 

retardation effect of the impacting. Defining a = 7  (g - m
), 

1 
then a/g = 7  (1 - 1), and equating this to the dimensionless 

mg 
acceleration gives 

or 

A (p, X0, R, = (1- 

A = 1 (1 - 
pT__  ) [0]. 

2 mg 
(4) 



G 
xo  

[T] 

To complete the dimensionless acceleration description an 
expression for the time average force, T, must be developed using the 
system parameters. The expression can be obtained with the 
impulse-momentum relationship F At = m Av. 

The total time increment, At, for the mass to traverse in the 
x-direction is proportional to the time increment, At1, to 
traverse the gap, G, and the time increment, At2, which is the 
fundamental period of the mass acting on the wall stiffness, k, i.e., 

At cc At
1 
 + T

1 
At
2 

[T] (4a) 

where Ti is a weighting factor. The total time period, At, must be 
sufficiently large to describe the time average response due to the 
impact forces. 

From fundamental equations of motion 

At
1 

= 

and 

At2  =() 1/2   

Substituting equations (4b) and (4c) into (4a) gives 

At cc wx
411 (C) 1/2

[T] . 
o 

 

The cumulative change in velocity, Av, in the x-direction during 
the time period At is described in terms of the frequency, w, and 
amplitude, xo, of the input excitation by the following relationship 

Av m wx
o

EL/T1 . (4e) 

Substituting equations (4d) and (4e) into the impulse-momentum 
relationship and solving for r gives 

T
2

m wx
o  

1/2 
T - [F] (5) 

(4b)  

(4c)  

(4d)  

G/wx
o 
+ T

1
(m/k) 
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where ''2 serves to insure that the time peripd, At, is sufficiently 
large to describe the time average response, as required. 

Since the magnitude of F is dependent on the time period over 
which the average is taken until that period becomes large enough so 
that any further increase will not change the magnitude of F, and 
since that minimum time period can be related to the input frequency, 
it is reasonable to use the following expression for T2 

T2  -2 C2  w [0] = "time constant" times the input frequency 

and, for the lumped-mass problem, 

Ti  E C1  [0] = "system constant". 

Substituting for Ti  and T2  in equation (5) and substituting that 

result into equation (4) and rearranging gives the following general 
form for the dimensionless acceleration, 

1 ( C2  w u xo)
2 

A 7 1 g pf-C (m/101/2  (wx0)1 [(1
(6) 

Substitution of equation (6) into equation (1) will result in a 
closed form expression for the nonlinear lumped mass problem in terms 
of two constants, C1 and C2. 

Note that if the gap, G, in equation (6) becomes zero, the second 
term takes the form of an inertial term, i.e., is proportional to 
2 w xo. 

Application to a Lumped Mass System  

To demonstrate that equation (6) when coupled with equation (1) 
provides an adequate description of the nonlinear response of the 
system of Figure 1, the following approach was employed: 

(a) A parametric study of the nonlinear system of Figure I was 
performed for nine different cases using the ANSYS [2] 
computer code. 

(b) The results of two of the nine cases were used to evaluate 
the "system" constant and the "time" constant in equation 
(6) to obtain a specific expression for the dimensionless 
acceleration. 
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(c) The dimensionless accelerations for the seven remaining 
cases were calculated using the specific expression obtained 
in (b) and these were compared to the ANSYS computer results 
obtained in (a). 

Lumped Mass System Parametric Study  

The ANSYS general purpose finite element computer code was used 
to obtain solutions for the system of Figure 1. Table 1 gives a 
listing of the system parameters which remained constant throughout 
the study and Table 2 gives a listing of the cases analyzed and the 
numerical values for the varied parameters for each case. With the 
addition of the independent variable t (s) and the dependent variable 
y (in) all quantities of Figure 1 are included in the parametric 
study. The following correspondence exists between the varied 
parameters of Table 2 and the dimensionless parameters in equation (1): 

Variable (Table 2) Corresponding Dimensionless Parameter  

x
o 
w
2 

x
o

X
o 

- 

n = w/(k/m)
1/2 

P 

G = Gk/mg 

Sample results from the parametric study are presented in Figures 
2 through 4 for cases 1, 2 and 5, respectively, of Table 2. 

Evaluation of the "System" and "Time" Constants  

To simplify the numerical calculations two modifications are 
introduced into equation (6). They are 

D E C
2
/g [T3  L-1] 

and 

E C
1
(m/k)1/2 

By introducing these identities equation (6) becomes 

Dpw
3
x
o
2 

;) 

[0] G + Ewx
o 

(7) 

This can be rewritten as 
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(pw
3
x
o
2
) + E (2A-1)(wx0) + (2A-1)G = 0 [L] . (8) 

The constants D and E can be determined by writing equation (8) 
using values of A determined from any two of the nine cases of Table 
2. For purposes of clarity the following convention is adopted 
throughout the remainder of this paper; 

A is defined to be a dimensionless acceleration calculated by 
means of the derived empirical equations being developed in 
this paper. 

CDA is defined as a Calculated Dimensionless Acceleration and is 
obtained either from analytically determined insertion times, 
t, by means of the relationship CDA = Insertion 
distance/386(t)2, or from the average slope of the velocity 

vs. time plots, g, by means of the relationship CDA = 

1 dv 
It is easily demonstrated that for the cases of 

2g dt* 
Figures 2 and 4 both methods lead to the same results. In 
general, these values come from analyses or experiments. 

Arbitrarily choosing cases 1 and 5 of Table 2, the values of CDA 

dv 
are obtained from the average slopes (

a
-) of Figures 2 and 4 as 

1 f dv 
CDA

1  =
= 

g 2g 'dt)1 = 
0.273 

and 

CDA
5 

= 0.283. 

Using these values for A in equation (8) along with the numerical 
values of the other parameters, and solving simultaneously, leads to 

D = 0.0000582 s3/in (9) 
E = 0.0283 s. 

Predictions and Comparisons  

When the numerical values for the constants (equations (9)) are 
substituted into equation (7), the specific expression for the 
dimensionless acceleration becomes 

( 0.0000582 p w
3 

x
o
2 

A = 7   1 
G + 0.0283 w x

o 

 

(10) 
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Equation (10) was used to predict the dimensionless acceleration, 
A, for cases 2 through 4 and 6 through 9 as listed in Table 2. These 
predictions are given in column 6 of Table 3. 

Column 2 of Table 3 gives the average slopes estimated from the 
ANSYS velocity vs. time plots. Dimensionless accelerations based on 
the values of column 2 are given in column 3. 

Table 3 also shows the percent difference between the 
dimensionless acceleration values based on the ANSYS results (column 
3) and those predicted by equation (10) (column 6) in column 7. The 
maximum percent difference is 7.4. 

Application to a System Including Fluid Drag and Insertion Assist  
Spring Forces  

Analyses were performed for a system consisting of a rod inserted 
through three bushings while the bushings are subjected to an in-phase 
sinusoidal lateral displacement time-history. In addition to the 
gravitational and frictional forces an additional insertion force 
exists due to the insertion assist spring shown in Figure 5 and an 
additional retarding force exists due to fluid drag effects shown in 
Figure 6. The method used for these analyses was to model the system 
with the rod in three different positions relative to the bushings. 
These models were used to obtain the impact forces at each of the 
three bushings for each of the three positions. The time-histories of 
the sum of the impact forces at the bushings for the three positions 
were then compared. Because of the high degree of similarity in these 
time-histories a single time-history was synthesized to represent the 
spatial sum of the impact forces, Fn, throughout the insertion. 

The synthesized time-history of impact forces was input into a 
special purpose computer program which integrated the following 
equation of motion to obtain the insertion time, t, 

m a = mg + K' (A-y) - p Fn - Cv 

where 

m,g,p and y are as defined in Figure 1 

K' = insertion spring stiffness [F/L] 

A = insertion spring free length minus compressed length [L] 

r 
a = y = acceleration [L/T2 

 
] 

v = ; = velocity [LIT] 

Fn = spatial sum of the lateral impact forces as a function of time [f 

C = fluid drag coefficient [F T/1.] . 
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Table 4 lists the nineteen cases considered. For all nineteen 
cases the lateral input excitation is sinusoidal with a 3g amplitude 
and a 25 Hz frequency. The radial gap, G, between the rod and 
bushings is 0.025 in and the rod weight, mg, is 71.5 lb. Also, the 
free length minus the compressed length of the insertion spring is 27 
in and the total insertion distance, y, is 37 in. The variable system 
parameters and insertion time results are also given in Table 4. 

Since, for the rod in the three bushings problem, only one 
parameter, 11, in the second term on the right hand side of equation 
(10) was varied, there is not enough information to write equations 
(8)to solve for the constants D and E. However, the factor 

Dw
3
x
o
2
/G + E wx

o 
is a constant for the data given and only one 

equation is required to evaluate it. 

Defining this constant as D' and solving equation (10) gives 

D' = Dw
3
x
o
2
/G + Ewx

o
(1-2A)/p. 

Using the values of CDA = 0.401 for A and p = 0.20 
(corresponding to case 3 of Table 4) the numerical value for D' is 
obtained as 0.990. Substituting this value into equation (10) gives 

A = 1  (1 - 0.99i) 
2 

(10a) 

Equation (10a) was used to obtain the values of A for cases 1 
through 8 of Table 4. 

Extension to Include the Insertion Spring Force  

To extend the proposed method to include the cases in Table 4 
with an insertion spring the previously derived empirical equation 
was modified to include a spring force term. 

Applying Newton's second law to the system of Figure 5 the 
following differential equation of motion is obtained 

m y+ K'y = m g+  K' A. 

Direct substitution will show that the solution to this equation 
is 

y = + A) (1-cos (:41)1/2t) . 

By replacing the cosine term in the above expression by its 
series expansion the following form is obtained 
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Es 2 
(m' 

 1 K 1 ' 4 
Y = 7 (K' + 6) t -- - rf (in

'  
-- t)2  + 360 (ii )3 t ---)*(11)  

If only the first term of the series is considered equation (11) 
reduces to 

y = I
z
. ( g  + K

m
A) t

2 (12) 

Examination of equation (12) indicates that for K' or A (or 
both) equal to zero it reduces to the simple expression for a freely 
falling body. 

From equation (12) the dimensionless acceleration for the 
insertion spring assisted problem can be approximated as 

a/g = 1 
(1 + 

V A) 
mg

(13) 

where K'A/mg is the insertion spring term. Introducing the 
insertion spring term with a "fitting" constant, S, into equation (7), 
the expression for the dimensionless acceleration becomes 

A= 2 mg G+Ew xo 

1 (1  + S K'A
Dpwx 

3 2 
o  

Application to Cases with a Spring Force  

Table 4 gives four cases (9 through 12) with an insertion assist 
spring and without fluid drag forces. The purpose here is to show 
that by evaluating the dimensionless constant, S, in equation (14) it 
is possible to make accurate predictions of the analytical results. 

Since the system parameters are the same as those for the 
previous cases of Table 4, with the exception of the insertion spring, 
the constant D' in equation (10a) takes the same value as before, i.e. 

D' = 0.990 . 

The insertion assist spring parameters used in the analyses of 
Table 4 were given as 

K' = 12 (lb/in), A = 27 (in) 

Thus, the insertion spring term in equation (14) becomes 

) (14) 
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K'A 12 x 27  
S = S 71.5

= 4.53 S 

The first spring assisted insertion case from Table 4 is with p 
= 0.0. Calculating CDA from the data for this case gives, 

CDA = = ---Y— -
37 

- 2.17 
g t

2 
386 (0.21)

2 

Substituting the above value for A in equation (14) with p = 
0.0 gives 

or 

1 
2.17 = 7  (1 + 4.53 S) , 

S = 0.737 . 

Thus, when all the constants are substituted into equation (14) 
the following expression is obtained 

A = (1 + 0.737 (m 
g 
 - 0.99011) 

2  

Predictions made with the above expression are listed in Table 4 
for cases 9 through 12. 

Extension to Include the Fluid Drag Force  

The purpose here is to extend the applicability of the previously 
derived empirical equation by including the effects of fluid drag. 
The case of fluid forces proportional to velocity is considered 
because the analytical results of Table 4 were obtained for that case. 

Applying Newton's second law to the system of Figure 6 the 
following differential equation of motion is obtained 

m + C y = m g . 

Direct substitution will show that the solution to this equation 
is 

(Ct) 

y = g (T. (e \ mi  - 1) + t l  . 

• 
(14a) 
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By replacing the exponential with its series expansion, the 
following expression is obtained 

y gt 2 6 g_C_m t 
 3 + 24 g ' 

1
f411'
C12 t4

(15) =
- 

It is noted that the above expression reduces to that for the 
free fall case when C = 0.0. 

If only the first two terms of equation (15) are considered, then 

1 2.c.  3 y = 7  gt2  - m  t (16) 

Table 4 provides analytical predictions of drop times where the 
fluid drag force is proportional to velocity (see cases 13 through 
16). The drag force at a bushing with no lateral excitation is [3] 

de. 
F = v A dt 

where 

v = viscosity of fluid [FT L-2] 

A = area over which shear forces exist [L2] 

de. 

dt
= strain rate of fluid [T-1] 

For three bushings the total drag is 

3 de, 
F
D 

= v E A. ' 
i=1 dt 

where 

de. 

d 1  = ) 
i 
 and Ai  = n D t. 

and 
v = velocity of rod with respect to the fluid 
D = diameter of rod 

ti = length of bushing 
Gi = nominal radial gap between rod and bushing. 
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Therefore 
3 ti  

F
D 
 =11 Dvv E u 

1=1 i 

Since all factors on the right hand side of equation (17), except 
velocity, are constant for a given system this equation can be 
rewritten as 

ED = C v. (18) 

This drag force is identical to that of Figure 6 which leads to a 
cubic equation in time, i.e., equation (16). Also, it is the case 
considered in Table 4 as mentioned earlier. Therefore, to describe 
this case it is reasonable to proceed as follows. Assume 

V (t) E (t) v E E (t) (19) 

where 

E (t) = an arbitrary dimensionless function of time and 

V = = average velocity for the insertion. 

If the form of E is chosen as 

(t) = a t - 8t
2

(20) 

then the following consequences hold: 

a) The fluid drag force would be comprised of two terms, one 
constant and one decreasing linearly with time. 

b) A realistic description of the velocity vs. time plots 
obtained from the cases in Table 4 is possible. 

c) It is necessary to solve a cubic equation in time for the 
insertion time. This is consistent with equation (16). 

Based on the above, the dimensionless acceleration, equation 
(14), is expanded to include the fluid drag effects as follows 

A= 
1 
2 
( 
1 + 

 
Sr6  D p w

3 
 xo  

m g G+ 
( 1 - f

1
C + f

2
Ct ) (21) 

(17) 
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where 

fl = fitting constant for the "constant" fluid force term 
f2 = fitting constant for the time dependent fluid force term. 

Application to Cases with Spring Force and Fluid Forces  

Table 4 provides six cases where the coefficient of friction was 
taken equal to zero and the drag coefficient (C in equation (18)) was 
taken as 0.1, 0.5, 1.0, 2.0, 2.5 and 3.0 respectively (see cases 13 
through 18). 

To evaluate the fitting constants, fl and f2, of equation 
(21) two sets of data must be used. Choosing cases 14 and 17 from 
Table 4 for this purpose gives the following simultaneous equations in 
terms of the fitting constants 

1.68 = 1  (1 + 3.35) ( 1 - 0.5f1  + 0.5 (0.239) f2  ) 

(22) 
1 

0.253
2- (1 + 3.35) ( 1 - 2.5 fl  + 2.5 (0.616) f2 ) 

The solution to equations (22) is 

0.518 
f2 = 0.267. 

Using these numerical values equation (21) becomes 

A = 7  ( 1 + 3.35 ) ( 1 - 0.518 C + 0.267 Ct) . (23) 

Using equation (23) the predicted values of the dimensionless 
acceleration can be calculated and these are given in Table 4 for 
cases 13 through 18. 

Application to a General Case  

Case 19 given in Table 4 is general in that all the forces 
described in equation (21) are acting. These include 

mechanical drag force due to impacting and friction 
fluid drag force 
gravitational force 
insertion spring force. 

Table 4 provides the parameters as used for this general case and 
the insertion time as calculated by the special purpose computer 
program. From these, the values for the quantities in equation (21) 
are calculated as follows 



3% 

SK'A = 3.35 
m g 

D p w
3
x
o
2 

G + Ewx
o 

f1C = 0.518 (1.0) = 0.518 

f2Ct = 0.267 (1.0) (0.287) = 0.0766 . 

Substituting the above values into equation (21) gives 

A = 2 (1 + 3.35 - 0.0990) ( 1 - 0.518 + 0.0766 ) = 1.19 

This predicted value for the dimensionless acceleration can be 
compared to the value obtained directly from the data as 

CDA = —1— = — 7— x
1  

gt
2 386

(.287)
2 

- 1.16 . 

The percent difference in these values is less than 2.6. 

Accuracy in the Predictions  

Tables 3 and 4 give numerical values for both calculated 
dimensionless accelerations, CDA (based on analytical results), and 
dimensionless accelerations, A, obtained through the application of 
the empirical equations developed herein. Comparisons indicate that, 
for the problems considered, the simplified empirical equations give 
accurate predictions of the dimensionless accelerations. Since 
insertion times are inversely proportional to the square root of the 
dimensionless accelerations, the error in the predicted insertion 
times is approximately one half the error in A. The largest percent 
difference in insertion time predictions for the cases considered 
in this work is 3.7. 

Applicability and Extensions of the Methods  

Table 2 implicitly gives the range for each of the varied 
parameters in the parametric study of the lumped mass system. Because 
of the high degree of accuracy in the predicted dimensionless 
accelerations it is concluded that the simplified methods used in 
making the predictions are applicable over the variable ranges 

- D' p = 0.0990 
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addressed. However, there may be finite limits on these parameter 
ranges which are problem dependent. Therefore, if the methods are 
applied to other systems, it will be necessary to confirm that the 
resulting description is accurate over the chosen range of the 
variables. In practice this verification can be obtained through a 
judicious choice of the "analyses" or "tests" performed to fit the 
constants in the system description (derived empirical equation) and, 
in the worst case, may introduce the requirement that more than the 
minimum number of "tests" be performed or that more than one equation, 
each applicable over a certain range of variables, be developed. 

The high degree of accuracy in the predicted dimensionless 
accelerations of Table 4, for the rod in three bushings system, 
indicates that the linearity assumptions and truncation of terms in 
equations (11) and (15) are acceptable for this particular system. 
Again, the acceptability of this method is problem dependent. If the 
solution time is small in comparison to a system characteristic time 
then this method will prove to be successful. This, too, must be 
verified on a case by case basis. 

Because of the success of the methods developed in this paper it 
is appropriate to consider other extensions. Inclusion of terms to 
describe the effects of other forces, such as buoyancy, is 
straightforward. More recent work suggests that equation (21) is 
applicable to cases where fluid forces are proportional to velocity 
squared and where both velocity and velocity squared fluid forces 
coexist. Also, it has been shown using test data that by modifying 
the exponent on x in the numerator of the second term in equation 
(10) rod flexibility effects can be accurately described. Finally, a 
word should be said about the possibility of using these methods for 
the case of earthquake excitation. If a "design" earthquake is chosen 
and represented in the manner discussed in [4] , then each sinusoidial 
term in the "design" earthquake would lead to one term in equation 
(10). If the earthquake is filtered through structures then it seems 
reasonable that a small number of terms would be required. For either 
case an equation similar to (10a) may be appropriate. 

CONCLUSIONS 

The work presented in this paper shows that it is possible to use 
a derived empirical closed form expression to accurately describe 
certain nonlinear systems. For the problems considered the methods 
lead to essential forms which expose the minimum number of tests or 
nonlinear analyses required to complete that description. The methods 
are general and could be applied to other nonlinear systems. 

By using the resulting simplified description of the nonlinear 
systems the effects of varying any of the system parameters can be 
easily evaluated by the designer and accurate, hand calculated 
predictions can be made. 
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TABLE 1: PARAMETRIC STUDY CONSTANTS 

Unchanging 
System 

Parameter Value Units  

m 0.185 lb-s2-in-1  

k 1 x 106 lb-in-1  

g 386 in-s-2  

TABLE 2: PARAMETRIC STUDY CASES AND VARIED PARAMETERS 

Case 
x
o (in) No. of g's 

(rad
) 

 
p (0) G (in) w s 

1 0.0443 2 132 0.3 0.008 
2 0.0443 2 132 0.1 0.008 
3 0.0443 2 132 0.5 0.008 
4 0.0222 1 132 0.3 0.008 
5 0.0443 2 132 0.3 0.016 
6 0.0869 2 94 0.3 0.008 
7 0.0313 2 157 0.3 0.008 
8 0.0111 0.5 132 0.3 0.008 
9 0.0222 1 132 0.01 0.008 



TABLE 3: COMPARISON OF DIMENSIONLESS ACCELERATIONS FROM ANSYS ANALYSES 
(COLUMN 3) AND PREDICTIONS (COLUMN 6) FOR THE LUMPED 

MASS PARAMETRIC STUDY 

1 

ase 
(See

C 
 Table 2) 

2 

dv 
( dtplots) 

 

3 

CDA = 

1 ai 

4 

Dpw
3
x
o
2 

5 

G+Ewx
o 

6 

Dimensionless 
Acceleration, A 

(Equation (10)) 

7 

% Difference 

1* 211. 0.273 0.0789 0.174 0.273 0.0 

2 330. 0.427 0.0263 0.174 0.424 0.7 

3 101. 0.130. 0.131 0.174 0.122 6.2 

4 300. 0.389 0.0197 0.0908 0.392 -0.8 

5* 219. 0.283 0.0197 0.0454 0.283 0,0 

6 219. 0.283 0.110 0.240 0.270 4.6 

7 214. 0.278 0.0663 0.147 0.275 1.1 

8 167. 0.432 0.00492 0.0494 0 450 -4.2 

9 179. 0.462 0.000657 0.0909 0.496 -7.4 

*These cases were used to evaluate the "time" and "system" constants. 



TABLE 4: ROD IN THREE BUSHINGS PROBLEM CASES, VARIED PARAMETERS AND RESULTS 

Case u K'(lb/in) C(lb-s/in) 

Insertion 

Time, (s) 

CDA 

(37/386(t)2) A (equation 
number 

1 0.00 0.0 0.0 0.438 0.500 0.500 (l0a) 
2 0.10 0.0 0.0 0.461 0.451 0.451 (10a) 
3* 0.20 0.0 0.0 0.489 0.401 0.401 (10a) 
4 0.30 0.0 0.0 0.522 0.352 0.352 (l0a) 
5 0.50 0.0 0.0 0.616 0.253 0.253 (l0a) 
6 0.70 0.0 0.0 0.793 0.152 0.154 (10a) 
7 0.75 0.0 0.0 0.867 0.128 0.129 (l0a) 
8 0.80 0.0 0.0 0.967 0.103 0.104 (10a) 

9* 0.00 12.0 0.0 0.210 2.17 2.17 (14a) 
10 0.10 12.0 0.0 0.212 2.13 2.12 (14a) 
11 0.50 12.0 0.0 0.223 1.93 1.93 (14a) 
12 1.00 12.0 0.0 0.241 1.65 1.68 (14a) 

13 0.00 12.0 0.1 0.215 2.07 2.07 (23) 
14* 0.00 12.0 0.5 0.239 1.68 1.68 (23) 
15 0.00 12.0 1.0 0.281 1.21 1.21 (23) 
16 0.00 12.0 2.0 0.460 0.453 0.455 (23) 
17* 0.00 12.0 2.5 0.616 0.253 0.253 (23) 
18 0.00 12.0 3.0 0.780 0.158 0.154 (23) 

19 0.10 12.0 1.0 0.287 1.16 1.19 (21) 

*These cases were used to numerically evaluate constants (see text). 
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xo  = max. input amplitude [L]* 

[.'. w = input displacement frequency  

k = impact spring constant 
c  
t-
.. 

[ 

] 

m = mass of falling body [FT — 

 

    

G, P 

  

 

[ L 
g = gravitational constant —7  

T' 

p = coefficient of friction [0] 

G = radial gap [L] 

y = insertion distance [L] 

t = time [T] 

  

  

     

     

 

x = xo  s N., t 

  

     

     

     

*Symbols in brackets designate dimensions and [0] indicates a 
dimensionless quantity. 

Figure 1. Nonlinear Lumped Mass System  
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Figure 2 

Case 1, Insertion Distance & Velocity vs. Time  
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Case 5, Insertion Distance & Velocity vs. Time  
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Figure 5. Falling Mass with Insertion Assist Spring  

Figure 6. Falling Mass with Fluid Drag Force  (FD) 


